Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 230
1.
Hum Genomics ; 18(1): 46, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730490

BACKGROUND: Current clinical diagnosis pathway for lysosomal storage disorders (LSDs) involves sequential biochemical enzymatic tests followed by DNA sequencing, which is iterative, has low diagnostic yield and is costly due to overlapping clinical presentations. Here, we describe a novel low-cost and high-throughput sequencing assay using single-molecule molecular inversion probes (smMIPs) to screen for causative single nucleotide variants (SNVs) and copy number variants (CNVs) in genes associated with 29 common LSDs in India. RESULTS: 903 smMIPs were designed to target exon and exon-intron boundaries of targeted genes (n = 23; 53.7 kb of the human genome) and were equimolarly pooled to create a sequencing library. After extensive validation in a cohort of 50 patients, we screened 300 patients with either biochemical diagnosis (n = 187) or clinical suspicion (n = 113) of LSDs. A diagnostic yield of 83.4% was observed in patients with prior biochemical diagnosis of LSD. Furthermore, diagnostic yield of 73.9% (n = 54/73) was observed in patients with high clinical suspicion of LSD in contrast with 2.4% (n = 1/40) in patients with low clinical suspicion of LSD. In addition to detecting SNVs, the assay could detect single and multi-exon copy number variants with high confidence. Critically, Niemann-Pick disease type C and neuronal ceroid lipofuscinosis-6 diseases for which biochemical testing is unavailable, could be diagnosed using our assay. Lastly, we observed a non-inferior performance of the assay in DNA extracted from dried blood spots in comparison with whole blood. CONCLUSION: We developed a flexible and scalable assay to reliably detect genetic causes of 29 common LSDs in India. The assay consolidates the detection of multiple variant types in multiple sample types while having improved diagnostic yield at same or lower cost compared to current clinical paradigm.


DNA Copy Number Variations , Genetic Testing , High-Throughput Nucleotide Sequencing , Lysosomal Storage Diseases , Humans , Lysosomal Storage Diseases/genetics , Lysosomal Storage Diseases/diagnosis , India , DNA Copy Number Variations/genetics , Genetic Testing/methods , High-Throughput Nucleotide Sequencing/methods , Polymorphism, Single Nucleotide/genetics , Female , Male , Molecular Probes/genetics
3.
Sci Data ; 11(1): 226, 2024 Feb 22.
Article En | MEDLINE | ID: mdl-38388642

The present study describes the kidney transcriptome of Labeo rohita, a freshwater fish, exposed to gradually increased salinity concentrations (2, 4, 6 and 8ppt). A total of 10.25 Gbps data was generated, and a suite of bioinformatics tools, including FEELnc, CPC2 and BLASTn were employed for identification of long non-coding RNAs (lncRNAs) and micro RNAs (miRNAs). Our analysis revealed a total of 170, 118, 99, and 269 differentially expressed lncRNA and 120, 118, 99, and 124 differentially expressed miRNAs in 2, 4, 6 and 8 ppt treatment groups respectively. Two competing endogenous RNA (ceRNA) networks were constructed i.e. A* ceRNA network with up-regulated lncRNAs and mRNAs, down-regulated miRNAs; and B* ceRNA network vice versa. 2ppt group had 131 and 83 lncRNA-miRNA-mRNA pairs in A* and B* networks, respectively. 4ppt group featured 163 pairs in A* network and 191 in B* network, while the 6ppt had 103 and 105 pairs. 8ppt group included 192 and 174 pairs. These networks illuminate the intricate RNA interactions in freshwater fish to varying salinity conditions.


Cypriniformes , MicroRNAs , RNA, Long Noncoding , RNA, Messenger , Animals , Gene Regulatory Networks , Kidney , MicroRNAs/genetics , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , Transcriptome , Cypriniformes/genetics , Salinity
4.
J Proteomics ; 296: 105124, 2024 03 30.
Article En | MEDLINE | ID: mdl-38364903

Buffalo is a silent heat animal and doesn't show prominent signs of estrous like cattle so it becomes difficult for farmers to determine the receptivity of the animal based purely on the animal behaviour. India, having a huge population size, needs to produce more milk for the population. Successful artificial insemination greatly depends on the receptivity of the animal. Hence the present study aimed to identify the changes in the metabolome of the buffalo. GC-MS based mass spectrometric analysis was deployed for the determination of estrous by differential expression of metabolites. It was found that hydracrylic acid, 3-bromo-1-propanol and benzyl serine were significantly upregulated in the estrous phase of buffalo (p.value ≤0.05, FC ≥ 2). The pathway enrichment analysis also supported the same as pathways related to amino acid metabolism and fatty acid metabolism were up regulated along with the Warburg effect which is linked to the rapid cell proliferation which might help prepare animals to meet the energy requirement during the estrous. Further analysis of the metabolic biomarkers using ROC analysis also supported these three metabolites as probable biomarkers as they were identified with AUC values of 0.7 or greater. SIGNIFICANCE: The present study focuses on the untargeted metabolomics studies of buffalo urine with special reference to the estrous phase of reproductive cycle. The estrous signals are more prominent in cattle, where animals show clear estrous signals such as mounting and discharge along with vocal signals. Buffalo is a silent heat animal and it becomes difficult for farmers to detect the estrous based on the physical and behavioral signals. Hence the present study focuses on GC-MS based untargeted metabolomics to identify differentially expressed urine metabolites. In this study, hydracrylic acid, 3-bromo-1-propanol and benzyl serine were found to be significantly upregulated in the estrous phase of buffalo (p-value ≤0.05, FC ≥ 2). Further confirmation of the metabolic biomarkers was done using Receiver operating characteristics (ROC) analysis which also supported these three metabolites as probable biomarkers as they had AUC values of 0.7 or greater. Hence, this study will be of prime importance for the people working in the area of animal metabolomics.


1-Propanol , Lactic Acid/analogs & derivatives , Serine , Humans , Female , Animals , Cattle , Estrus , Metabolomics , Biomarkers/analysis , Metabolome , Propanols
5.
J Air Waste Manag Assoc ; 74(5): 335-344, 2024 05.
Article En | MEDLINE | ID: mdl-38407923

Azo dyes, when released untreated in the environment, cause detrimental effects on flora and fauna. Azoreductases are enzymes capable of cleaving commercially used azo dyes, sometimes in less toxic by-products which can be further degraded via synergistic microbial cometabolism. In this study, azoreductases encoded by FMN1 and FMN2 genes were screened from metagenome shotgun sequences generated from the samples of textile dye industries' effluents, cloned, expressed, and evaluated for their azo dye decolorization efficacy. At pH 7 and 45°C temperature, both recombinant enzymes FMN1 and FMN2 were able to decolorize methyl red at 20 and 100 ppm concentrations, respectively. FMN2 was found to be more efficient in decolorization/degradation of methyl red than FMN1. This study offers valuable insights into the possible application of azoreductases to reduce the environmental damage caused by azo dyes, with the hope of contributing to sustainable and eco-friendly practices for the environment management. This enzymatic approach offers a promising solution for the bioremediation of textile industrial effluents. However, the study acknowledges the need for further process optimization to enhance the efficacy of these enzymes in large-scale applications.Implications: The study underscores the environmental hazards associated with untreated release of azo dyes into the environment and emphasizes the potential of azoreductases, specifically those encoded by FMN1 and FMN2 genes, to mitigate the detrimental effects. The study emphasizes the ongoing commitment to refining and advancing the enzymatic approach for the bioremediation of azo dye-containing effluents, marking a positive stride toward more sustainable industrial practices.


Cloning, Molecular , Industrial Waste , Nitroreductases , Textile Industry , Nitroreductases/genetics , Nitroreductases/metabolism , NADH, NADPH Oxidoreductases/genetics , NADH, NADPH Oxidoreductases/metabolism , Flavin Mononucleotide/metabolism , Azo Compounds/metabolism , Biodegradation, Environmental , Water Pollutants, Chemical/metabolism , Coloring Agents/metabolism , Metagenomics/methods
6.
Mar Pollut Bull ; 201: 116172, 2024 Apr.
Article En | MEDLINE | ID: mdl-38394797

Corals harbour ~25 % of the marine diversity referring to biodiversity hotspots in marine ecosystems. Global efforts to find ways to restore the coral reef ecosystem from various threats can be complemented by studying coral-associated bacteria. Coral-associated bacteria are vital components of overall coral wellbeing. We explored the bacterial diversity associated with coral Dipsastraea favus (D. favus) collected from the Gulf of Kutch, India, using both culture-dependent and metagenomic approaches. In both approaches, phylum Proteobacteria, Firmicutes, and Actinobacteria predominated, comprising the genera Vibrio, Bacillus, Shewanella, Pseudoalteromonas, Exiguobacterium and Streptomyces. Moreover, the majority of culturable isolates showed multiple antibiotic resistance index ≥0.2. In this study, specific bacterial diversity associated with coral sp. D. favus and its possible role in managing coral health was established. Almost 43 strains from the samples were successfully cultured, creating a base for exploring these microbes for their potential use in coral conservation methods.


Anthozoa , Tinea Favosa , Animals , Anthozoa/microbiology , Ecosystem , Phylogeny , RNA, Ribosomal, 16S , Bacteria/genetics , Coral Reefs , Biodiversity
7.
BMC Genomics ; 25(1): 196, 2024 Feb 19.
Article En | MEDLINE | ID: mdl-38373902

Lumpy skin disease virus (LSDV) belongs to the genus Capripoxvirus and family Poxviridae. LSDV was endemic in most of Africa, the Middle East and Turkey, but since 2015, several outbreaks have been reported in other countries. In this study, we used whole genome sequencing approach to investigate the origin of the outbreak and understand the genomic landscape of the virus. Our study showed that the LSDV strain of 2022 outbreak exhibited many genetic variations compared to the Reference Neethling strain sequence and the previous field strains. A total of 1819 variations were found in 22 genome sequences, which includes 399 extragenic mutations, 153 insertion frameshift mutations, 234 deletion frameshift mutations, 271 Single nucleotide polymorphisms (SNPs) and 762 silent SNPs. Thirty-eight genes have more than 2 variations per gene, and these genes belong to viral-core proteins, viral binding proteins, replication, and RNA polymerase proteins. We highlight the importance of several SNPs in various genes, which may play an essential role in the pathogenesis of LSDV. Phylogenetic analysis performed on all whole genome sequences of LSDV showed two types of variants in India. One group of the variant with fewer mutations was found to lie closer to the LSDV 2019 strain from Ranchi while the other group clustered with previous Russian outbreaks from 2015. Our study highlights the importance of genomic characterization of viral outbreaks to not only monitor the frequency of mutations but also address its role in pathogenesis of LSDV as the outbreak continues.


Lumpy Skin Disease , Lumpy skin disease virus , Animals , Cattle , Lumpy skin disease virus/genetics , Lumpy Skin Disease/epidemiology , Lumpy Skin Disease/genetics , Phylogeny , Genomics , Disease Outbreaks
8.
Sci Total Environ ; 914: 169911, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38185156

Herbicide application is a common practice in intensive agriculture. However, accumulating herbicide residues in the ecosystem affects important soil attributes. The effect of two herbicides, pendimethalin and pretilachlor, on soil biochemical properties and microbial community composition was studied in a transplanted paddy field. Results reveal a gradual decline in herbicide residue up to 60 days after application. Changes in soil microbiological and biochemical properties (microbial biomass, enzymes, respiration, etc.) showed an inconsistent pattern across the treatments. Quantitative polymerase chain reaction analysis showed the archaeal, bacterial and fungal populations to be of higher order in control soil compared to the treated one. Amplicon sequencing (16S rRNA and ITS genes) exhibited that besides the unclassified genera, ammonia-oxidizing Crenarchaeota and the group represented by Candidatus Nitrososphaera were dominant in both the control and treated samples. Other archaeal genera viz. Methanosarcina and Bathyarchaeia showed a slight decrease in relative abundance of control (0.5 %) compared to the treated soil (0.7 %). Irrespective of treatments, the majority of bacterial genera comprised unclassified and uncultured species, accounting for >64-75 % in the control group and over 78.29 % in the treated samples. Members of Vicinamibacteraceae, Bacillus and Bryobacter were dominant in control samples. Dominant fungal genera belonging to unclassified groups comprised Curvularia, Aspergillus, and Emericellopsis in the control group, whereas Paraphysoderma and Emericellopsis in the herbicide-treated groups. Inconsistent response of soil properties and microbial community composition is evident from the present study, suggesting that the recommended dose of herbicides might not result in any significant change in microbial community composition. The findings of this investigation will help in the formulation of a framework for risk assessment and maintaining sustainable rice cultivation in herbicide- amended soils.


Herbicides , Microbiota , Oryza , Soil/chemistry , Herbicides/analysis , Oryza/genetics , RNA, Ribosomal, 16S/genetics , Archaea/genetics , Bacteria/genetics , Acidobacteria/genetics , Soil Microbiology
9.
Sci Total Environ ; 912: 168882, 2024 Feb 20.
Article En | MEDLINE | ID: mdl-38040372

Plastic pollution increases globally due to the high volume of its production and inadequate mismanagement, leading to dumps in landfills affecting terrestrial and aquatic ecosystems. Landfills, as sink for plastics, leach various toxic chemicals and microplastics into the environment. We scrutinized the genetic expression for low-density polyethylene (LDPE) degradation via microorganisms to investigate cell viability and metabolic activities for biodegradation and genetic profiling. Samples were collected from the Pirana waste landfill at Ahmedabad, Gujarat, which is one of the largest and oldest municipal solid waste (MSW) dump sites in Asia. Results analyzed that isolated bacterial culture PN(A)1 (Bacillus cereus) is metabolically active on LDPE as carbon source during starvation conditions when incubated for up to 60 days, which was confirmed via 2,3,5-triphenyl-tetrazolium chloride (TTC) reduction test, reported cell viability and LDPE degradation. Abrasions, surface erosions, and cavity formations were analyzed via scanning electron microscopy (SEM), whereas the breakdown of high molecular polymers converted to low molecules, i.e., depolymerization, was also observed via Fourier-transform infrared (FTIR) spectroscopy over 90 days, along with changes in functional groups of carboxylic acids and aldehyde as well as the formation of polysulfide, aliphatic compounds, aromatic ethers, alcohols, and ether linkages. Further, transcriptomic analysis was performed via DESeq2 analysis to understand key gene expression patterns and pathways involved in LDPE degradation. During the initial phase of LDPE degradation, genes related to biological processes, like membrane transportation, ABC transporters, carbon and lipid metabolism, fatty acid degradation/oxidation, and TCA cycle, are likely to indicate pathways for stress response and molecular functions, like oxidoreductase, catalytic, lyase, transferase, and hydrolase activities were expressed. Interlinking between metabolic pathways indicates biodegradation process that mineralizes LDPE during subsequent incubation days. These pathways can be targeted for increasing the efficiency of LDPE degradation using microbes in future studies. Thus, considering microbial-mediated biodegradation as practical, eco-friendly, and low-cost alternatives, healthy biomes can degrade polymers in natural environments explored by understanding the genetic and enzymatic expression, connecting their role in the process to the likely metabolic pathways involved, thereby increasing the rate of their biodegradation.


Plastics , Polyethylene , Polyethylene/metabolism , Plastics/metabolism , Ecosystem , Biodegradation, Environmental , Waste Disposal Facilities , Carbon
10.
Oncol Res Treat ; 47(1-2): 10-17, 2024.
Article En | MEDLINE | ID: mdl-38008084

INTRODUCTION: Oncolytic virotherapy is a novel strategy for cancer treatment in humans and companion animals. Canine distemper virus (CDV) is known to induce apoptosis in tumor cells, thus serving as a potential candidate for oncolytic therapy. However, the mechanism of viral oncolytic activity is less studied and varies depending on the type of cancer and cell lines. METHODS: In the present study, the susceptibility of the MCF-7 cell line to CDV infection was assessed using the CDV strain, which was confirmed previously through sequence analysis in the Vero cell line. The impact of CDV infection on cell proliferation and apoptosis was studied by evaluating the expression of four target genes including the myeloid cell leukemia 1 (MCL-1), phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1), transcription factor (SP1), and DNA (cytosine-5)-methyltransferase 3A (DNMT3A). RESULTS: CDV replication in the cells induced cytopathic effect and decreased in the cell proliferation rates compared to the uninfected control. MCL-1, SP1, and PIK3R1 gene expression was down-regulated, while the expression of DNMT3A was up-regulated 3 days post-infection. The expression levels of the target genes suggest that CDV may be inducing the intrinsic apoptotic pathway in the cancer cell line. CONCLUSION: Overall, the results strongly propose CDV strain as a potential candidate for cancer therapy after detailed studies.


Breast Neoplasms , Distemper Virus, Canine , Animals , Chlorocebus aethiops , Humans , Female , Distemper Virus, Canine/genetics , Myeloid Cell Leukemia Sequence 1 Protein , Vero Cells , Apoptosis , Breast Neoplasms/therapy
11.
World J Microbiol Biotechnol ; 40(2): 52, 2023 Dec 26.
Article En | MEDLINE | ID: mdl-38146029

Escalating proportions of industrially contaminated sites are one of the major catastrophes faced at the present time due to the industrial revolution. The difficulties associated with culturing the microbes, has been circumvent by the direct use of metagenomic analysis of various complex niches. In this study, a metagenomic approach using next generation sequencing technologies was applied to exemplify the taxonomic abundance and metabolic potential of the microbial community residing in Amlakhadi canal, Ankleshwar at two different seasons. All the metagenomes revealed a predominance of Proteobacteria phylum. However, difference was observed within class level where Gammaproteobacteria was relatively high in polluted metagenome in Summer while in Monsoon the abundance shifted to Betaproteobacteria. Similarly, significant statistical differences were obtained while comparing the genera amongst contaminated sites where Serratia, Achromobacter, Stenotrophomonas and Pseudomonas were abundant in summer season and the dominance changed to Thiobacillus, Thauera, Acidovorax, Nitrosomonas, Sulfuricurvum, Novosphingobium, Hyphomonas and Geobacter in monsoon. Further upon functional characterization, the microbiomes revealed the diverse survival mechanisms, in response to the prevailing ecological conditions (such as degradation of aromatic compounds, heavy metal resistance, oxidative stress responses and multidrug resistance efflux pumps, etc.). The results have important implications in understanding and predicting the impacts of human-induced activities on microbial communities inhabiting natural niche and their responses in coping with the fluctuating pollution load.


Betaproteobacteria , Gammaproteobacteria , Microbiota , Humans , Gammaproteobacteria/genetics , Betaproteobacteria/genetics , Betaproteobacteria/metabolism , Seasons , Bacteria/metabolism , Microbiota/genetics , Organic Chemicals/metabolism
12.
Arch Microbiol ; 206(1): 6, 2023 Nov 28.
Article En | MEDLINE | ID: mdl-38015256

Paracoccus species are metabolically versatile gram-negative, aerobic facultative methylotrophic bacteria showing enormous promise for environmental and bioremediation studies. Here we report, the complete genome analysis of Paracoccus sp. strain DMF (P. DMF) that was isolated from a domestic wastewater treatment plant in Kanpur, India (26.4287 °N, 80.3891 °E) based on its ability to degrade a recalcitrant organic solvent N, N-dimethylformamide (DMF). The results reveal a genome size of 4,202,269 base pairs (bp) with a G + C content of 67.9%. The assembled genome comprises 4141 coding sequences (CDS), 46 RNA sequences, and 2 CRISPRs. Interestingly, catabolic operons related to the conventional marine-based methylated amines (MAs) degradation pathway were functionally annotated within the genome of an obligated aerobic heterotroph that is P. DMF. The genomic data-based characterization presented here for the novel heterotroph P. DMF aims to improve the understanding of the phenotypic gene products, enzymes, and pathways involved with greater emphasis on facultative methylotrophic motility-based latent pathogenicity.


Paracoccus , Paracoccus/genetics , Dimethylformamide , Bacteria , Genomics , Water
13.
J Biomol Struct Dyn ; : 1-16, 2023 Nov 22.
Article En | MEDLINE | ID: mdl-37993988

Globally, dental caries is a prevalent oral disease caused by cariogenic bacteria, primarily Streptococcus mutans. It establishes caries either through sucrose-dependent (via glycosyltransferases) or through sucrose-independent (via surface adhesins Antigen I/II) mechanism. Sortase A (srtA) attaches virulence-associated adhesins to host tissues. Because of their importance in the formation of caries, targeting these proteins is decisive in the development of new anticariogenic drugs. High-throughput virtual screening with LIPID MAPS -a fatty acid database was performed. The selected protein-ligand complexes were subjected to molecular dynamics simulation (MDs). The Binding Free Energy of complexes was predicted using MM/PBSA. Further, the drug-likeness and pharmacokinetic properties of ligands were also analyzed. Out of 46,200 FAs scrutinized virtually against the three protein targets (viz., GtfC, Ag I/II and srtA), top 5 FAs for each protein were identified as the best hit based on interaction energies viz., hydrogen bond numbers and hydrophobic interaction. Further, two common FAs (LMFA01050418 and LMFA01040045) that showed high binding affinity against Ag I/II and srtA were selected for MDs analysis. A 100ns MDs unveiled a stable conformation. Results of Rg signified that FAs does not induce significant structural & conformational changes. SASA indicated that the complexes maintain higher thermodynamic stability during MDs. The predicted binding free energy (MM/PBSA) of complexes elucidated their stable binding interaction. ADME analysis suggested the FAs are biologically feasible as therapeutic candidates. Overall, the presented in silico data is the first of its kind in delineating FAs as promising anticaries agents of future.Communicated by Ramaswamy H. Sarma.

14.
Front Plant Sci ; 14: 1204828, 2023.
Article En | MEDLINE | ID: mdl-37915505

Cumin (Cuminum cyminum L.), an important spice crop belonging to the Apiaceae family is infected by Fusarium oxysporum f. sp. cumini (Foc) to cause wilt disease, one of the most devastating diseases of cumin adversely affects its production. As immune responses of cumin plants against the infection of Foc are not well studied, this research aimed to identify the genes and pathways involved in responses of cumin (cv. GC-2, GC-3, GC-4, and GC-5) to the wilt pathogen. Differential gene expression analysis revealed a total of 2048, 1576, 1987, and 1174 differentially expressed genes (DEGs) in GC-2, GC-3, GC-4, and GC-5, respectively. In the resistant cultivar GC-4 (resistant against Foc), several important transcripts were identified. These included receptors, transcription factors, reactive oxygen species (ROS) generating and scavenging enzymes, non-enzymatic compounds, calcium ion (Ca2+) transporters and receptors, R-proteins, and PR-proteins. The expression of these genes is believed to play crucial roles in conferring resistance against Foc. Gene ontology (GO) analysis of the up-regulated DEGs showed significant enrichment of 19, 91, 227, and 55 biological processes in GC-2, GC-3, GC-4, and GC-5, respectively. Notably, the resistant cultivar GC-4 exhibited enrichment in key GO terms such as 'secondary metabolic process', 'response to reactive oxygen species', 'phenylpropanoid metabolic process', and 'hormone-mediated signaling pathway'. Furthermore, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed the enrichment of 28, 57, 65, and 30 pathways in GC-2, GC-3, GC-4, and GC-5, respectively, focusing on the up-regulated DEGs. The cultivar GC-4 showed enrichment in pathways related to steroid biosynthesis, starch and sucrose metabolism, fatty acid biosynthesis, butanoate metabolism, limonene and pinene degradation, and carotenoid biosynthesis. The activation or up-regulation of various genes and pathways associated with stress resistance demonstrated that the resistant cultivar GC-4 displayed enhanced defense mechanisms against Foc. These findings provide valuable insights into the defense responses of cumin that could contribute to the development of cumin cultivars with improved resistance against Foc.

15.
Nat Mach Intell ; 5(7): 739-753, 2023 Jul.
Article En | MEDLINE | ID: mdl-37771758

Integrating gene expression across tissues and cell types is crucial for understanding the coordinated biological mechanisms that drive disease and characterise homeostasis. However, traditional multitissue integration methods cannot handle uncollected tissues or rely on genotype information, which is often unavailable and subject to privacy concerns. Here we present HYFA (Hypergraph Factorisation), a parameter-efficient graph representation learning approach for joint imputation of multi-tissue and cell-type gene expression. HYFA is genotype-agnostic, supports a variable number of collected tissues per individual, and imposes strong inductive biases to leverage the shared regulatory architecture of tissues and genes. In performance comparison on Genotype-Tissue Expression project data, HYFA achieves superior performance over existing methods, especially when multiple reference tissues are available. The HYFA-imputed dataset can be used to identify replicable regulatory genetic variations (eQTLs), with substantial gains over the original incomplete dataset. HYFA can accelerate the effective and scalable integration of tissue and cell-type transcriptome biorepositories.

16.
Front Genet ; 14: 1209843, 2023.
Article En | MEDLINE | ID: mdl-37719712

Introduction: Brain being the master regulator of the physiology of animal, the current study focuses on the gene expression pattern of the brain tissue with special emphasis on regulation of growth, developmental process of an organism and cellular adaptation of Labeo rohita against unfavourable environmental conditions. Methods: RNA-seq study was performed on collected brain samples at 8ppt salt concentration and analyzed for differential gene expression, functional annotation and miRNA-mRNA regulatory network. Results: We found that 2450 genes were having significant differential up and down regulation. The study identified 20 hub genes based on maximal clique centrality algorithm. These hub genes were mainly involved in various signaling pathways, energy metabolism and ion transportation. Further, 326 up and 1214 down regulated genes were found to be targeted by 7 differentially expressed miRNAs i.e., oni-miR-10712, oni-miR-10736, ssa-miR-221-3p, ssa-miR-130d-1-5p, ssa-miR-144-5p and oni-miR-10628. Gene ontology analysis of these differentially expressed genes led to the finding that these genes were involved in signal transduction i.e., calcium, FOXO, PI3K-AKT, TGF-ß, Wnt and p53 signalling pathways. Differentially expressed genes were also involved in regulation of immune response, environmental adaptation i.e., neuroactive ligand-receptor interaction, ECM-receptor interaction, cell adhesion molecules and circadian entrainment, osmoregulation and energy metabolism, which are critical for salinity adaptation. Discussion: The findings of whole transcriptomic study on brain deciphered the miRNA-mRNA interaction patterns and pathways associated with salinity adaptation of L. rohita.

17.
Soft Matter ; 19(37): 7184-7191, 2023 Sep 27.
Article En | MEDLINE | ID: mdl-37705404

We recast the problem of hydrogel swelling under physical constraints as an energy optimization problem. We apply this approach to compute equilibrium shapes of hydrogel spheres confined within a jammed matrix of rigid beads and interpret the results to determine how confinement modifies the mechanics of swollen hydrogels. In contrast to the unconfined case, we find a spatial separation of strains within the bulk of the hydrogel as the strain becomes localized to an outer region. We also explore the contact mechanics of the gel, finding a transition from Hertzian behavior to non-Hertzian behavior as a function of swelling. Our model, implemented in the Morpho shape optimization environment and validated against an experimentally demonstrated prototypical scenario, can be applied in any dimension, readily adapted to diverse swelling scenarios and extended to use other energies in conjunction.

18.
Sci Total Environ ; 905: 167060, 2023 Dec 20.
Article En | MEDLINE | ID: mdl-37709091

Wastewater-based epidemiology (WBE) has been implemented globally. However, there remains confusion about the number and frequency of samples to be collected, as well as which types of treatment systems can provide reliable specific details about the virus prevalence in specific areas or communities, enabling prompt management and intervention measures. More research is necessary to fully comprehend the possibility of deploying sentinel locations in sewer networks in larger geographic areas. The present study introduces the first report on wastewater-based surveillance in Gandhinagar City using digital PCR (d-PCR) as a SARS-Cov-2 quantification tool, which describes the viral load from five pumping stations in Gandhinagar from October 2021 to March 2022. Raw wastewater samples (n = 119) were received and analyzed weekly to detect SARS-CoV-2 RNA, 109 of which were positive for N1 or N2 genes. The monthly variation analysis in viral genome copies depicted the highest concentrations in January 2022 and February 2022 (p < 0.05; Wilcoxon signed rank test) coincided with the Omicron wave, which contributed mainly from Vavol and Jaspur pumping stations. Cross-correlation analysis indicated that WBE from five stations in Gandhinagar, i.e., capital city sewer networks, provided two-week lead times to the citywide and statewide active cases (time-series cross-correlation function [CCF]; 0.666 and 0.648, respectively), mainly from individual contributions of the urbanized Kudasan and Vavol stations (CCF; 0.729 and 0.647, respectively). These findings suggest that sewer pumping stations in urbanized neighborhoods can be used as sentinel sites for statewide clinical surveillance and that WBE surveillance using digital PCR can be an efficient monitoring and management tool.


COVID-19 , RNA, Viral , Humans , COVID-19/epidemiology , SARS-CoV-2/genetics , Polymerase Chain Reaction , India , COVID-19 Testing
19.
R Soc Open Sci ; 10(9): 221001, 2023 Sep.
Article En | MEDLINE | ID: mdl-37711145

Understanding and monitoring the major influences on SARS-CoV-2 prevalence is essential to inform policy making and devise appropriate packages of non-pharmaceutical interventions. Through evaluating community level influences on the prevalence of SARS-CoV-2 infection and their spatio-temporal variations in England, this study aims to provide some insights into the most important risk parameters. We used spatial clusters developed in Jahanshahi and Jin (2021 Transportation 48, 1329-1359 (doi:10.1007/s11116-020-10098-9)) as geographical areas with distinct land use and travel patterns. We also segmented our data by time periods to control for changes in policies or development of the disease over the course of the pandemic. We then used multivariate linear regression to identify influences driving infections within the clusters and to compare the variations of those between the clusters. Our findings demonstrate the key roles that workplace and commuting modes have had on some of the sections of the working population after accounting for several interrelated influences including mobility and vaccination. We found communities of workers in care homes and warehouses and to a lesser extent textile and ready meal industries and those who rely more on public transport for commuting tend to carry a higher risk of infection across all residential area types and time periods.

20.
Mol Biol Rep ; 50(9): 7605-7618, 2023 Sep.
Article En | MEDLINE | ID: mdl-37532919

BACKGROUND: Brahmi is one of the important nootropic botanicals, widely sold in the market, with the name "Brahmi'' being used to describe both Bacopa monnieri and Centella asiatica species. The Brahmi herbal products market is expanding; hence, economically motivated adulteration is highly prevalent. METHODS AND RESULTS: This study aimed to develop DNA-based methods, including SCAR marker-based PCR and metabarcoding, to authenticate Brahmi herbal products and compare these methods with HPLC. These methods have been validated using mock controls (in-house blended formulations). All targeted plant species in mock controls were detected successfully with all three methods, whereas, in market samples, only 22.2%, 55.6%, and 50.0% were found positive for Brahmi by PCR assay, DNA metabarcoding, and HPLC, respectively. Metabarcoding can detect the presence of non-labeled plants together with targeted species, which is an advantage over PCR assay or HPLC. CONCLUSION: SCAR marker-based PCR is a rapid and cost-effective method for detecting the presence of B. monnieri and C. asiatica. However, in this study, the success rate of PCR amplification was relatively low because the primers targeted either RAPD or ITS-based SCAR markers. HPLC assay, although an alternative, was unable to detect the presence of other botanicals, just like the SCAR marker-based PCR assay. On the other hand, metabarcoding can be utilized to identify the target plants, even in very small quantities, while also providing simulated identification of other botanicals. This study successfully addressed the need for quality control of Brahmi herbal products and provided the first-time report of DNA metabarcoding for such products.


DNA Barcoding, Taxonomic , DNA , Chromatography, High Pressure Liquid , Random Amplified Polymorphic DNA Technique , Polymerase Chain Reaction
...